59

END OF SEMESTER EXAMINATIONS, NOVEMBER - 2018

MATHEMATICS PAPER - IV SUBJECT CODE: 14UBMA08.

MAJOR: B.Sc.(Chemistry)

TIME : 3 HOURS SEMESTER MAX. MARKS: 75

$\underline{SECTION} - \underline{A} (5 \times 2 = 10)$

Answer ALL the Questions:

1. Define radical centre of a circle.

[OR]

- 2. Define the limiting points of the coaxial system.
- 3. Prove that the sum of the squares of two conjugate semi diameters of an ellipse is constant.

[OR]

- 4. Write the equation of the normal at the point $(a\cos\theta, b\sin\theta)$ of an ellipse.
- 5. Write any two properties of the general conic.

ORI

- 6. Write down the Direction cosines of X axis and Y axis.
- 7. What is the general from of the equation of a plane?

- 8. Write the Intercept form of the equation of a plane.
- 9. Define Sphere.

http://www.onlineBU.com

10. Write the characteristics equation of a sphere.

$\underline{\mathbf{SECTION}} - \mathbf{B} \ (5 \ \mathbf{X} \ 4 = 20)$

Answer ALL the Questions:

11. Find the radical centre of the three circles $x^2 + y^2 - x + 3y - 3 = 0$,

$$x^{2} + y^{2} - 2x + 2y + 2 = 0$$
 and $x^{2} + y^{2} + 2x + 3y - 9 = 0$.

- 12. Find the equation of the circle passing through the intersection of two circles $x^2 + y^2 - 6 = 0$, $x^2 + y^2 + 4y - 1 = 0$ and through the point (-1,1).
- 13. Show that the tangents at the ends of a pair of conjugate diameters of an ellipse form a parallelogram of constant area.

[OR]

- 14. Show that the product of the focal distances of a point on an ellipse is equal to the square of the semi - diameter which is conjugate to the diameter through the point.
- 15. Derive equation of the normal at the point P of a $Conic \frac{1}{n} = 1 + e \cos \theta$ whose vertical angle is α .

[OR]

- 16. Find the condition in order that the line $\frac{1}{r} = A\cos\theta + B\sin\theta$ may be tangent to
 - the $Conic \frac{1}{e} = 1 + e \cos \theta$.
- 17. Find the equation to the plane, which passes through (4,2,1), (0,2,3) and (5,4,-1).

18. Show that the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and $\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$ are coplanar http://www.onlinebu.com and find the equation of the plane containing them.

19. Find the centre and radius of the sphere $3x^2 + 3y^2 + 3z^2 - 4x + 6y - 9z + 1 = 0$.

[OR]

20. Find the equation of the sphere with centre at the point (2,-3,1) and touching the plane 2x+2y-z+12=0.

$\underline{SECTION} - C (5 \times 9 = 45)$

Answer ALL the Questions:

21. Obtain the equation of a circle which passes through the point (1,2) and bisects the circumference of the circle $x^2 + y^2 = 9$ cuts orthogonally the circle $x^2 + y^2 - 2x + 8y - 7 = 0$.

[OR]

- 22. Find the equation of the circles which passes through the points of intersection of $x^2 + y^2 2x + 1 = 0$; $x^2 + y^2 5x 6y + 4 = 0$ and which touch the line 2x y + 3 = 0.
- 23. If P and Q are extremities of two conjugate diameters of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and S is a focus, then prove that $PQ^2 (SP SQ)^2 = 2b^2$.

[OR]

- 24. Prove that the acute angle between two conjugate diameters of an ellipse is a minimum when they are equal.
- 25. A circle passing through the focus of a conic whose latus rectum is 2l meets the Conic in four points, whose distance from the focus are r_1, r_2, r_3 and r_4 . Prove

that
$$\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} + \frac{1}{r_4} = \frac{2}{l}$$
.

[OR]

26. If the normal at α, β, γ on $\frac{1}{r} = 1 + \cos\theta$ meet in the point (ρ, ϕ) show that

i.
$$\tan \frac{\alpha}{2} + \tan \frac{\beta}{2} + \tan \frac{\gamma}{2} = 0$$

ii.
$$\alpha + \beta + \gamma = 2n\pi + 2\theta$$

27. Find the equation of the planes bisecting the angle between the planes 2x+2y+z+6=0 and 3x+12y-4z-10=0.

[OR]

- 28. Find the equation of the plane passing through the line of intersection of the planes x+2y+2z+4=0, 3x+3y+2z+8=0 and perpendicular to the plane 5x-y+4z=6.
- 29. Find the equation of the sphere passing through the points (2,0,1), (1,-5,-1), (0,-2,3) and (4,-1,2).

[OR]

30. Find the equation of the sphere which has it centre on the plane 5x + y - 4z + 3 = 0 and passing through the circle.

* * * * *