BATCH: 87-2016

END OF SEMESTER EXAMINATIONS, APRIL / MAY 2017 MATHEMATICS PAPER - IV SUBJECT CODE: 14UBMA08

MAJOR: B.Sc. CHEMISTRY

TIME : 3 HOURS

SEMESTER: II MAX.MARKS: 75

$\underline{SECTION} - A (5 X 2 = 10)$

Answer ALL Questions:

1. State the condition for two circles to cut one another orthogonally.

- Show that the circles $x^2 + y^2 6x 9y + 13 = 0$ and $x^2 + y^2 2x 16y = 0$ touch each other.
- State any two properties of conjugate diameters.

- Find the eccentricity of the ellipse if y = x and 3y = -2x are a pair of its conjugate diameters.
- Write down the formula to find the area of a triangle when the polar co-ordinates of the angular points $(r_1, \theta_1), (r_2, \theta_2), (r_3, \theta_3).$

(OR)

- 6. Write down the asymptotes of the conic $\frac{l}{r} = 1 + e \cos\theta$.
- 7. Find the equation the plane which passes through the point (-1,3,2) and is parallel to the plane x-y+z=3.

- 8. Find the distance between the parallel planes 4x + 3y 12z + 6 = 0 and 4x + 3y 12z 9 = 0.
- 9. Find the centre and radius of the sphere $x^2 + y^2 + z^2 6x + 8y 10z + 1 = 0$.
- 10. Find the equation of the sphere with centre at (3, 2, -1) and passing through the point (-1, 1, 2).

SECTION – B (5 \times 4 = 20)

Answer ALL Questions:

- 11. Obtain the equation of a circle which passes through the point (1,2) bisects the circumference of the circle $x^2 + y^2 = 9$ and cuts orthogonally the circle $x^2 + y^2 - 2x + 8y - 7 = 0$.
- 12. Find the equation of a circle passing through the point (1,2) and the common points of the circles $x^2 + y^2 2x + 3y 1 = 0$ and $x^2 + y^2 + 3x 2y 1 = 0$.
- 13. If the normals at the four points (x_1, y_1) , (x_2, y_2) , (x_3, y_3) and (x_4, y_4) on the ellipse $\frac{x^2}{x^2} + \frac{y^2}{h^2} = 1$ are

concurrent, then prove that $(x_1 + x_2 + x_3 + x_4) \left(\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} + \frac{1}{x_4} \right) = 4.$

- 14. Prove that if a pair of diameters be conjugate with respect to a hyperbola, they will be conjugate with respect to the conjugate hyperbola.
- 15. Find the locus of the foot of the perpendicular drawn from the pole to the tangents to the Circle r=2a cosθ.

... 2 ...

(OR)

- 16. Prove that the chords of a rectangular hyperbola which subtend a right angle at a focus touch a fixed parabola.
- 17. Find the equation of the planes bisecting the angle between the planes 2x+2y+z+6=0 and 3x+12y-4z-10=0.

(OR)

- 18. Find the equation of the plane through the point (-2,3,1) and the intersecting line of the planes x + 4y 2y + 9 = 0 and 2x 3y + z = 5.
- 19. Find the equation of the sphere which has its centre at the point (6, -1, 2) and touching the plane 2x y + 2z 2 = 0.

(OR)

20. A plane passes through a fixed point (a,b,c). Show that the locus of the foot of the perpendicular from the origin to the plane is the sphere $x^2+y^2+z^2$ -ax-by-cz=0.

$\underline{SECTION} - C (5 X 9 = 45)$

Answer ALL Questions:

- 21. Find the equation to the circle whose diameter is the common chord of the two circles $(x-a)^2+y^2=a^2$ and $x^2+(y-b)^2=b^2$. Find also the length of the common chord.
- 22. Find the limiting points of the system of circles coaxal with $x^2+y^2-6x-6y+4=0$, $x^2+y^2-2x-4y+3=0$.
- 23. If the normals at the points whose eccentric angles are α, β, γ are concurrent, then show that $\sin (\beta + \gamma) + \sin (\gamma + \alpha) + \sin (\alpha + \beta) = 0$.

24. Prove that the acute angle between two conjugate diameters of an ellipse is a minimum when they are equal.

25. A chord PQ of a conic subtends an angle of 2β of constant magnitude at the pole. Find the locus of the intersection of the tangent at P and Q.

(OR)

- 26. Derive the equation of the chord of the conic $\frac{t}{r} = 1 + e \cos\theta$ joining the points whose vectorial angles are $\alpha \beta$ and $\alpha + \beta$.
- 27. Find the shortest distance between the lines $\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1}$ and $\frac{x+1}{-3} = \frac{y+7}{2} = \frac{z-6}{4}$. Determine also its equations.

(OR

- 28. Find the image of the point (1,2,-3) on the plane 3x-3y+10z=26.
- 29. Find the equation of the sphere which has it centre on the plane 5x + y 4z = 0 and passing through the circle $x^2 + y^2 + z^2 3x + 4y 2z + 8 = 0$, 4x 5y + 3z 3 = 0.
- 30. Show that the intersection of the two spheres $x^2+y^2+z^2-2x-4y+6z-2=0$, $x^2+y^2+z^2-4x-6y+4z+4=0$ is a circle lying in the plane x+y+z=3. Find its centre and radius.