### **END OF SEMESTER EXAMINATIONS, NOVEMBER - 2017** COMPUTER ORIENTED NUMERICAL METHODS SUBJECT CODE: 09UBCT03

MAJOR: B. Sc (Computer Technology)

TIME : 3 HOURS SEMESTER : II MAX. MARKS: 75

# SECTION A $-(5 \times 2 = 10)$

### Answer All the Questions:

- 1. Show that the iterative formula for finding the reciprocal of N is  $x_{n+1} = x_n (2 Nx_n)$ .
- Write down the condition for the convergence of Gauss Seidal iteration scheme.
- Distinguish between interpolation and extrapolation.
- What are the errors in Trapezoidal and Simpson's rules of numerical integration?
- 5. Write Runge Kutta's second order formula to solve y' = f(x, y) with  $y(x_0) = y_0$ .

# SECTION B $-(5 \times 4 = 20)$

# **Answer All the Questions:**

http://www.onlineBU.com

6. a) Solve the equation  $x^3 + x^2 - 1 = 0$  for the positive root by iteration method, correct to 3 decimal places.

(OR)

- b) Find a positive root of  $x^3 4x + 1 = 0$  by False position method. (perform 3 iterations)
- 7. a) Solve the following system by Gauss Elimination method.

$$2x + 3y - z = 5$$

$$4x + 4y - 3z = 3$$

$$2x - 3y + 2z = 2$$

(OR)

b) Solve the following system by Gauss - Seidal method, correct to 3 decimal places.

$$8x - 3y + 2z = 20$$

$$4x + 11y - z = 33$$

$$6x + 3v + 12z = 35$$

8. a) Using Newton's interpolation, find the value of y at x = 1.05 from the table given below.

| X | 1.0   | 1.1   | 1.2   | 1.3   | 1.4   | 1.5   |
|---|-------|-------|-------|-------|-------|-------|
| v | 0.841 | 0.891 | 0.932 | 0.964 | 0.985 | 1.015 |

(OR)

b) Using Lagrange's formula, find y when x = 2, from the table given below.

| x | 0 | 1 | 3  | 4   |  |
|---|---|---|----|-----|--|
| y | 5 | 6 | 50 | 105 |  |

9. a) Evaluate  $\int_{0}^{\pi} \frac{1}{1+x} dx$  using Trapezoidal rule.

(OR)

b) Using Simpson's three – eighths rule, evaluate  $\int x^4 dx$ .

10. a) Using Taylor method, compute y(0.2) correct to 4 decimal places, given  $y^1 = 1 - 2xy$  and y(0) = 0.

(OR)

b) Compute y(0.1), given  $y^1 + y + xy^2 = 0$ , y(0) = 1, h = 0.1 using Runge-Kutta fourth order, correct to 4 decimals.

### **SECTION C – (3 \times 15 = 45)**

#### **Answer any THREE Questions:**

- 11. Assuming that a root of  $x^3 9x + 1 = 0$  lies in the interval (2,4), find the root by Bisection method.
- 12. Solve the following system by triangularization method.

$$x+y+z=1$$

$$4x+3y-z=6$$

$$3x+5y+3z=4$$

13. Find the first derivatives of the function tabulated below at x = 50 and x = 56, using Newton's method.

| X | 50     | 51     | 52     | 53     | 54     | 55     | 56     |
|---|--------|--------|--------|--------|--------|--------|--------|
| У | 3.6840 | 3.7084 | 3.7325 | 3.7563 | 3.7798 | 3.8030 | 3.8259 |

- 14. Evaluate the integral  $\int_{4}^{5-2} \log_e x$  using Simpson's  $\frac{1}{3}$  and  $\frac{3}{8}$  rules, by dividing the range into 6 equal parts.
- 15. Using Adam's method, find y(0.4) given  $y' = \frac{xy}{2}$ , y(0) = 1, y(0.1) = 1.01, y(0.2) = 1.022, y(0.3) = 1.023.

\*\*\*\*