END OF SEMESTER EXAMINATIONS, APRIL/MAY - 2017

OPERATIONS RESEARCH SUBJECT CODE: 08UAMA08

MAJOR: B.Sc (Mathematics)

TIME : 3 HOURS

SEMESTER : IV

MAX. MARKS: 75

$SECTION - A (5 \times 2 = 10)$

Answer all the Questions:

1. Define Operations Research.

[OR]

- 2. Define Degenerate Solution.
- 3. Define Dual problem.

[OR]

4. Write the dual of the primal problem given below

Minimize
$$z = 7x_1 + 3x_2 + 8x_3$$

Subject to the Constraints

$$8x_1 + 2x_2 + x_3 \ge 3$$

$$3x_1 + 6x_2 + 4x_3 \ge 4$$

$$4x_1 + x_2 + 5x_3 \ge 1$$

$$x_1 + 5x_2 + 2x_3 \ge 7$$

$$x_1, x_2, x_3 \ge 0$$

5. Define Transportation problem.

[OR

- 6. Define Assignment problem.
- 7. Define the Sequencing problem.

[OR]

- 8. What are the types of sequencing problem?
- 9. What are the errors in network?

[OR]

10. What is meant by PERT?

$\underline{SECTION} - \underline{B} (5 \times 4 = 20)$

Answer all the Questions:

11. The manager of an oil refinery must decide on the optimum mix of 2 possible blending processes of which the inputs and outputs production run are as follows.

	Input		Output	
Process	Crude A	Crude B	Gasoline	Gasoline
1	6	4	6	9
2	5	6	5	5

The maximum amounts available of Crudes A & B are 250 units and 200 units respectively. Market demand shows that atleast 150 units gasoline X and 130 units of gasoline Y must be produced. The profits of process 1 & 2 are Rs. 4 & Rs. 5 respectively. Formulate the problem for maximizing the profit.

[OR]

12. Solve the following L.P.P by Graphical method.

Maximize $z = x_1 + x_2$

Subject to the Constraints:

$$x_1 + x_2 \le 1$$

$$-3x_1 + x_2 \ge 3$$

$$x_1, x_2 \ge 0$$

13. Use duality to solve the L.P.P.

Maximize
$$z = 3x_1 + 4x_2$$

Subject to the Constraints

$$x_1 - x_2 \le 1$$

$$x_1 + x_2 \ge 4$$

$$x_1 - 3x_2 \le 3$$

$x_1, x_2 \ge 0$ [OR]

- 14. Explain formulation of a dual problem.
- 15. Explain North West corner method.

[OR]

16. Find initial basic feasible solution by North West corner.

[OR]

18. We have five jobs, each of which must go through the two machines A & B in the order AB. Processing times in hours are given in the table below.

 Jobs
 :
 1
 2
 3
 4
 5

 Machine A
 :
 5
 1
 9
 3
 10

 Machine B
 :
 2
 6
 7
 8
 4

Determine a sequence for the jobs that will minimize the elapsed time.

19. Explain Fulkerson's Rule.

[OR]

20. Tasks A,B,C... H,I constitute a project. The notation x<y means that the task x must be finished before y can begin. With the notation.

$$A < D$$
; $A < E$; $B < F$; $D < F$; $C < G$; $C < H$; $F < I$; $G < I$;

Draw a graph to represent the sequence of tasks.

$SECTION - C (5 \times 9 = 45)$

Answer all the Questions:

21. Solve the following L.P.P by simplex method

Maximize
$$z = x_1 - x_2 + 3x_3$$

Subject to the Constraints

$$x_1 + x_2 + x_3 \le 10$$

$$2x_1 - x_3 \le 2$$

$$2x_1 - 2x_2 + 3x_3 \le 0$$

$$x_1, x_2, x_3 \ge 0$$

[OR]

22. Use two-phase simplex method to

Maximize
$$z = 5x_1 - 4x_2 + 3x_3$$

Subject to the Constraints

$$2x_1 + x_2 - 6x_3 = 20$$

$$6x_1 + 5x_2 + 10x_3 \le 76$$

$$8x_1 - 3x_2 + 6x_3 \le 50$$

$$x_1, x_2, x_3 \ge 0$$

23. Explain Dual simplex algorithm.

[OR]

24. Use duality to solve the following L.P.P

Maximize
$$z = 2x_1 + x_2$$

Subject to the Constraints

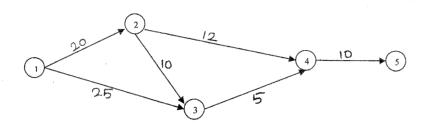
$$x_1 + 2x_2 \le 10$$

$$x_1 + x_2 \le 6$$

$$x_1 - x_2 \le 2$$

$$x_1 - 2x_2 \le 1$$

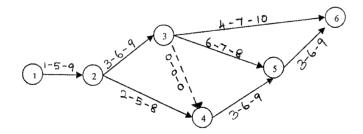
$$x_1, x_2 \ge 0$$


25. Find optimum solution to the following transportation problem.

26. Solve the following Assignment problem.

27. Solve the following sequencing problem when passing is not allowed.

28. Explain with 2 jobs and k machines.


29.

Using the given information, find the Critical path.

[OR]

- 30. For the network given below, find the critical path. Find the probability of completing the project in
 - i. 21 days
 - ii. 19 days

