END OF SEMESTER EXAMINATIONS, NOVEMBER - 2018 OPERATIONS RESEARCH

SUBJECT CODE: 08UAMA08

MAJOR: B.SC., (MATHS)

TIME : 3 HOURS

SEMESTER : IV MAX. MARKS: 75

$\underline{SECTION - A (5 \times 2 = 10)}$

Answer All the questions:

1. Define basic feasible solution in a LPP.

(OR)

- 2. What is the difference between slack variable and surplus variable?
- 3. Formulate the dual of the following linear programming problem:

Maximize $z = 5x_1 + 3x_2$ subject to the constraints;

$$3x_1 + 5x_2 \le 15, 5x_1 + 2x_2 \le 10, x_1 \ge 0 \text{ and } x_2 \ge 0.$$

(OR)

- 4. Define primal problem and dual problem.
- 5. When does degeneracy occur in $m \times n$ transportation problem?

(OR)

- Write the mathematical formulation of an assignment problem.
- 7. What is a sequencing problem?

(OR)

- 8. What is 'no passing' rule in a sequencing algorithm?
- 9. Define critical path.

(OR)

10. Write the formula to calculate variance in PERT.

$\underline{SECTION} - \underline{B} (5 \times 4 = 20)$

Answer All the questions:

11. Use the graphical method to solve the following Lpp Minimize $z = -x_1 + 2x_2$ subject to the constraints;

$$-x_1 + 3x_2 \le 10; x_1 + x_2 \le 6; x_1 - x_2 \le 2 \& x_1, x_2 \ge 0.$$

(OR)

- 12. Explain the formulation of Lpp.
- 13. Write down the dual of the Lpp:

Minimize $z = 4x_1 + 6x_2 + 18x_3$ subject to the constraints;

$$x_1 + 3x_2 \ge 3$$
; $x_2 + 2x_3 \ge 5$ and $x_1, x_2, x_3 \ge 0$

(OR

14. Find the dual of the Lpp

Maximize $z = 2x_1 + 3x_2 + x_3$ Subject to constraints:

$$4x_1 + 3x_2 + x_3 = 6; x_1 + 2x_2 + 5x_3 = 4; x_1, x_2, x_3 \ge 0.$$

..2...

http://ww

.com

15. Obtain the initial basic feasible solution by NWC Method

Demand 60 40 30 110

(OR)

16. Solve the following assignment problem:

17. Describe the method of processing 'n' jobs through two machines.

(OR)

18. Explain the assumptions made while dealing with sequencing problems.

19. Draw the network diagram for the following data

Activity:	Α	В	C	D	Ε	F	G	Н	I	J	K	L
Predecessor:	-	-	Α	Α	В	В	C,D	E	C,D	G,H	F	J,K_

(OR)

- 20. Define: (i) optimistic time
 - (ii) pessimistic time

$\underline{SECTION-C\ (5\ X\ 9=45)}$

Answer All the questions:

21. Solve the following Lpp by simplex method.

Maximize $z = 4x_1 + 10x_2$ subject to the constraints;

$$2x_1 + x_2 \le 50; 2x_1 + 5x_2 \le 100 \text{ and } x_1, x_2 \ge 0$$

(OR)

22. Solve by Graphical method.

Minimize $z = 20x_1 + 40x_2$ subject to the constraints;

$$3x_1 + 12x_2 \ge 36; 20x_1 + 10x_2 \ge 100 \text{ and } x_1, x_2 \ge 0$$

23. Use duality to solve the following Lpp

Minimize $z = 20x_1 + 10x_2$ subject to the constraints;

$$x_1 + x_2 \ge 10; 3x_1 + 2x_2 \ge 24$$
 and $x_1, x_2 \ge 0$

(OR)

24. Use Dual simplex method to solve

Maximize $z = -3x_1 - x_2$ subject to the constraints

$$x_1 + x_2 \ge 1$$
; $2x_1 + 3x_2 \ge 2$ and $x_1, x_2 \ge 0$.

25. Obtain an initial basic feasible solution by Vogel's approximation method. Supply

25 22 33] 200 44 35 30 30 60 38 28 30 140

Demand 200 40 120 40

(OR)

26. Solve the following assignment problem. Men

E F G H

27. In a factory, there are 6 jobs to perform, each of which should go through two machines A and B in the order A.B. Determine the sequence for the 6 jobs that will minimize the total elapsed time.

Job:	J_1	J_2	J_3	J_4	$J_{\mathfrak{s}}$	J_{6}
Machine A:	1	3	8	5	6	3
Machine B:	5	6	3	2	2	10

(OR)

28. Determine the optimum sequence of jobs that minimizes the total elapsed time based on the information processing time on machines is given in hours & passing is not allowed.

Job:	Α	В	С	D	E	F	G
Machine M_1	3	8	7	4	9	8	7
Machine M_2	4	3	2	5	1	4	3
Machine M_3	6	7	5	11	5	6	12

29. Find the critical path for each activity

Activity;	A	В	С	D	E	F	G	Ή	ı
Predecessor	-	-	•	A	В	С	D,E	В	H,F
Duration:	3	5	4	2	3	9	8	7	9

(OR)

30. Given the following data;

ownig data,							
Activity:	1-2	1-3	1-4	2-5	3-5	4-6	5-6
<i>t</i> ₀ :	i	1	2	1	2	2	3
<i>t_m</i> :	i	4	2	1	5	5	6
t_n :	7	7	8	1	14	8	15

- 1. What is the probability that the project will be completed atleast 4 weeks earlier than expected?
- 2. Calculate the Variance and Standard Deviation Given:

Z	0.50	1.33	2.00		
P	0.3085	0.0918	0.0228		