BATCH: 2003 - 2014

Reg. No.

http://www.onlineBU.com

END OF SEMESTER EXAMINATIONS, NOVEMBER - 2017 SKILL BASED PAPER: NUMERICAL METHODS SUBJECT CODE: 12UEMA01

MAJOR: B.Sc. MATHS TIME : 3 HOURS

SEMESTER: VI

MAX. MARKS: 75

$\underline{SECTION - A (5 \times 2 = 10)}$

Answer ALL the questions:

1. Write the formula for i) Chord method, ii) Newton Raphson method.

- 2. Find the interval in which the smallest positive root of the equation $x^3 x 4 = 0$ lies.
- 3. Write the following operators.
 - i) the backward difference operator.
 - ii) the central difference operator.

(OR)

- 4. Write i) Gauss central difference formula (Forward).
 - ii) Everett's formula.
- Name the error's in Numerical differentiation.

(OR)

- 6. Write the errors of Simpson's rule and Simpson's $\frac{3}{8}$ rule.
- Explain matrix inversion method.

(OR)

- 8. Name any 2 direct methods.
- 9. Define Initial value problem with example.

10. Define Fourth order R-K method.

$\underline{SECTION - B (5 \times 4 = 20)}$

Answer ALL questions:

http://www.onlineBU.com

- 11. Perform 5 iterations of the bisection method to obtain the root of $x^3 5x + 1 = 0$.
- 12. Find by Newton Raphson method for $N^{\frac{1}{3}}$, N is the positive real number. Also find the results in two decimal places when N = 18.

13. Show that i)
$$\delta = \nabla (1 - \nabla)^{-\frac{1}{2}}$$
; ii) $\mu = \left(1 + \frac{\delta^2}{4}\right)^{\frac{1}{2}}$

14. Using Lagrange's interpolation formula find f(x) from the table:

$$x : 0 1 3 4$$

 $f(x): 12 0 12 24$

15. A solid revolution is formed by rotating about the x-axis the area between the x-axis, x=0, x=1and a curve through the points with the following coordinates.

0.00 х: 0.25

0.50

0.75

1.000 0.9896 0.9589 0.9089 0.8415

Estimate the volume of the solid to 3 decimal places.

(OR)

16. Form the difference table for

1.0 х:

1.2

1.6

1.8

2.0

2.2

3.3201 4.0552 4.9530 6.0496 7.3891 2.7183 у. 9.0250 17. Solve: 3x + y + 2z = 3, 2x - 3y - z = -3, x + 2y + z = 4.

- 18. Solve by Gauss method: 2x + y + z = 10, 3x + 2y + 3z = 18, x + 4y + 9z = 16.
- 19. Given $\frac{dy}{dx} = y x$ where y(0) = 2, find y(0.1), y(0.2) correct to 4 decimal places by RK Second order method.

(OR)

20. Solve $y' = 1 + y^2$, y(0) = 0, Compute y(0.8) by Milne's method.

SECTION – C (5 \times 9 = 45)

Answer ALL the questions:

- 21. Using Regula Falsi method determine the root of $\cos x xe^x = 0$ (upto 3 decimal places). (OR)
- 22. The smallest positive root of $f(x) = x^4 3x^2 + x 10 = 0$ is to be obtained. i) Find the interval of unit length which contains this root, ii) Perform two iterations of the bisection method; iii) Taking the mid point of the last interval as the initial approximation, Perform 3 iterations of the Newton-Raphson method.
- 23. For the following data, calculate the differences and obtain the Forward and backward difference polynomials. Interpolate x = 0.25, x = 0.35

x: 0.1 0.2 0.3 0.4 0.5 f(x): 1.40 1.56 1.76 2.00 2.28

(OR)

 Using Newton's backward difference interpolation, construct the interpolating polynomial that fits the data

x : 0.1 0.3 0.5 0.9 1.1 f(x): -1.699 -1.073 -0.375 1.429 2.631

Estimate the value of f(x) at x = 0.6, x = 1.0

25. Evaluate the integral $I = \int_0^1 \frac{dx}{1+x}$ using i) Trapezoidal Rule; ii) Simpson's Rule with 8 equal subintervals.

(OR)

26. From the following values of x and y, find $\frac{dy}{dx}$ when x = 6;

x: 4.5 5.0 5.5 6.0 6.5 7.0 7.5 y: 9.69 12.90 16.71 21.18 26.37 32.34 39.15

27. Use Gauss method to Compute the inverse of $A = \begin{pmatrix} 2 & 1 & 1 \\ 3 & 2 & 3 \\ 1 & 4 & 9 \end{pmatrix}$.

(OR)

- 28. Find the solution to 3 decimal places of the system 83x+11y-4z=95, 7x+52y+13z=104, 3x+8y+29z=7 using Jacobi method.
- 29. Use Picard's method to obtain y for x = 0.25, 0.5, 1.0 correct to 3 decimal places for

$$y' = \frac{x^2}{y^2 + 1}, \ y(0) = 0.$$

(OR)

30. Determine the values of y when x = 0.1 given that y(0) = 1 and $y' = x^2 + y$ by modified Euler's Method.
