Reg.No.:

END OF SEMESTER EXAMINATIONS, NOVEMBER - 2018 MATHEMATICAL TECHNIQUES IN ECONOMICS SUBJECT CODE: 18P3EC03

MAJOR: M.A (ECONOMICS) TIME : 3 HOURS

SEMESTER : I MAX.MARKS: 70

$\underline{SECTION - A (5 X 4 = 20)}$

Answer ALL Questions:

1. a) Draw a graph for the Quadratic function $2x^2-4x+1$.

(OR)

b) Solve the following pair of Simultaneous equations

$$4x - 3y - 15 = 0$$

$$3x - 3y - 6 = 0$$

2. a) For the total utility function U = (x+7)(3x+9y) find the marginal utilities of x and y at x=1 and y=2.

b) Find first and second order partial derivaties of the following function

$$Z = 2x^3 + 5x^2y + xy^2 + y^2$$
 and also verify that $\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x}$.

3. a) Evaluate $\int (8x^2 - 3x^2 + x - 1) dx$.

- b) Evaluate $\int_{0}^{2} \left(x^3 2x 3\right) dx$.
- 4. a) Solve Graphically

Maximize z = 45x + 80y

Subject to $5x + 20y \le 400$

$$10x + 15y \le 450$$

$$x \ge 0$$
 and $y \ge 0$

(OR)

- b) List out the basic steps in Mathematical formulation of L.P.P
- 5. a) Solve the following equations by using Cramer's Rule.

$$2x_1 + 3x_2 = 13$$

$$x_1 + 7x_2 = 23$$

(OR)

b) If
$$A = \begin{bmatrix} 2 & 1 \\ 4 & 3 \\ 1 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix}$ verify that $AB^T = B^T A^T$.

$\underline{SECTION - B (5 X 10 = 50)}$

Answer ALL Questions:

6. a) Solve the following equations

$$x + y + z = 18$$
$$x - y + z = 12$$
$$x + y - Z = 6$$

(OR)

- b) Find the elasticity of demand and Marginal Revenue at P=2, if the demand $q=30-5q-p^2$.
- 7. a) Given the utility function $U = x^2 + 3xy 5y^2$. Price of commodity x is Rs. 2, Price of commodity y is Rs.3 and consumer's money income Rs. 6, find out the equilibrium level of consumption of commodities x and y. Also prove the conditions for maximisation.

(OR

- b) Given the following Revenue (R) and cost (C) functions for a firm $R = 20q q^2$ and $C = q^2 + 8q + 2$, find the equilibrium level of output, price, total revenue, total cost and profit.
- 8. a) The supply function for a commodity $P = x^2 + x + 5$ where x denotes. Find the Producer's surplus when the price is Rs.11.

(OR)

- b) The demand function for a commodity P = 30 2D. The supply function P = 3D. Find consumer's Surplus.
- 9. a) Using Simplex Method and solve the following Linear Programming Problem.

Maximize
$$z = 10x_1 + x_2 + 2x_2$$

Subject to $x_1 + x_2 - 2x_3 \le 10$
 $4x_1 + x_2 + x_3 \le 20$
 $x_1, x_2, x_3 \ge 0$

(OR)

b) Use Simplex Method to show that there is an unbounded solution to the following L.P.P

Maximize
$$Z = x_1 + 5x_2$$

Subject to $x_1 - x_2 \le 1$
 $2x_1 - x_2 \le 5$
 $x_1, x_2 \ge 0$

10.a) Solve the equations by using Cramer's Rule.

$$2x-3y+4z=5$$
$$x+2y-3z=8$$
$$x-y-z=1$$

(OR)

b) Find the Inverse of
$$A = \begin{bmatrix} 4 & 0 & 2 \\ 2 & 10 & 2 \\ 3 & 9 & 1 \end{bmatrix}$$