END OF SEMESTER EXAMINATIONS, NOVEMBER - 2017 REAL ANALYSIS

SUBJECT CODE: 17P3MA02

MAJOR: M.Sc (Mathematics)

TIME : 3 HOURS

SEMESTER: I MAX. MARKS: 70

SECTION A $-(5 \times 4 = 20)$

Answer All the Questions:

1. If P^* is a refinement of P. Prove that $L(P, f, \alpha) \le L(P^*, f, \alpha)$ and $L(P, f, \alpha) \le L(P^*, f, \alpha)$.

(OR)

- 2. State and prove the fundamental theorem of calculus.
- 3. Prove that the sequence of functions $\{f_n\}$, defined on E, converges uniformly on E if and only if for every $\varepsilon > 0$ there exists an integer N such that $m \ge N, n \ge N$ implies $|f_n(x) f_m(x)| \le \varepsilon$.

(OR)

- 4. If K is a compact metric space, if $f_n \in \mathcal{C}(K)$ for n = 1, 2, 3, ... and if $\{f_n\}$ converges uniformly on K. prove that $\{f_n\}$ is equicontinuous on K.
- 5. Suppose $\sum c_n$ converges. Put $f(x) = \sum_{n=0}^{\infty} c_n x^n \left(-1 \le x \le 1\right)$. Prove that $\lim_{n \to \infty} f(x) = \sum_{n=0}^{\infty} c_n$. (OR)
- 6. Suppose $a_0, ..., a_n$ are complex numbers, $n \ge 1, a_n \ne 0, P(z) = \sum_{k=0}^{n} a_k z^k$. Prove that P(z) = 0 for some complex number z.
- 7. Let Ω be the set of all invertible linear operator on R^n . If $A \in \Omega$, $B \in L(R^n)$, and $\|B A\|$. $\|A^{-1}\| < 1$. Prove that $B \in \Omega$.

(OR)

(OR)

- 8. Suppose E is on open set in R^n , f maps E into R^m , f is differentiable at $x_0 \in E$, g maps an open set containing f(E) into R^k , and g is differentiable at $f(x_0)$. Prove that the mapping f of E into R^k defined by F(x) = g(f(x)) is differentiable at x_0 , and $F'(x_0) = g'(f(x_0))f'(x_0)$.
- 9. If [A] and [B] are n by n matrices, prove that $\det([B][A]) = \det[B] \det[B]$.

10. Suppose f is defined on an open set $E \subset R^2$, suppose that $D_1 f, D_{21} f$ and $D_2 f$ exist at every point of E, $D_{21} f$ exists at every point of E, and $D_{21} f$ is continuous at some point $(a,b) \in E$. Show that $D_{21} f$ exist at (a,b) and $(D_{12} f)(a,b) = (D_{21} f)(a,b)$.

SECTION B $-(5 \times 10 = 50)$

Answer All the Questions:

11. Assume α increases monotonically and $\alpha' \in \Re$ on [a,b]. Let f be a bounded real function on [a,b]. Prove that $f \in \Re$ if and only if $f\alpha' \in \Re$ and in that case

$$\int_{a}^{b} f d\alpha = \int_{a}^{b} f(x) \alpha'(x) dx.$$

http://www.onlineBU.com

- 12. If γ' is continuous on [a,b], prove that γ is rectifiable, and $\wedge(\gamma) = \int_{a}^{b} |\gamma'(t)| dt$.
- 13. Suppose $\{f_n\}$ is a sequence of functions, differentiable on [a,b] and such that $\{f_n(x_0)\}$ converges for some point x_0 on [a,b]. If $\{f'_n\}$ converges uniformly on [a,b]. Prove that $\{f_n\}$ converges uniformly on [a,b], to a function f, and $f'(x) = \lim_{n \to \infty} f'_n(x)$, $(a \le x \le b)$.

(OR)

- 14. If K is compact, if $f_n \in \mathcal{C}(K)$ for n = 1, 2, 3, ... and if $\{f_n\}$ is pointwise bounded and equicontinuous on K, prove that $\{f_n\}$ is uniformly bounded on K and $\{f_n\}$ contains a uniformly convergent subsequence.
- 15. State and prove Taylor's theorem.

(OR)

- 16. State and prove Parseval's theorem.
- 17. Let r be positive integer. If a vector space X is spanned by a set of r vectors. Prove that $\dim X \le r$.

(OR)

- 18. State and prove inverse function theorem.
- 19. State and prove implicit function theorem.

(OR)

20. State and prove the rank theorem.
