BATCH: 2017

Reg. No.	

END OF SEMESTER EXAMINATIONS, APRIL/MAY - 2018 MATHEMATICAL PHYSICS - I SUBJECT CODE: 17P3PH02

MAJOR: M.Sc. (Physics) TIME : 3 HOURS

SEMESTER : I ١ MAX. MARKS: 70

$\underline{SECTION} - A (10 X 1 = 10)$

Answer ALL the Questions:

- Choose the best answer:
 - 1. The line integral $\int A \, dr$ is independent of path, then the vector field A(x, y, z) is
 - a) Non-Conservative
- b) Conservative
- c) Associative
- d) Non of the above

- 2. Laplace transforms of $\sin h(at) =$ _____.
 - a) $\frac{s}{s^2 a^2}$

- b) $\frac{s}{s^2 + a^2}$ c) $\frac{a}{s^2 a^2}$
- d) $\frac{a}{s^2 + a^2}$
- 3. A function that is analytic at all points of the Z-plane and finite at infinity
 - a) must have a singularity
- b) must be zero
- c) must be a constant d) cannot exit
- 4. The value of Bessel's function $J_0(0)$ is
 - a) Zero

- b) One
- c) Two
- d) None of these
- 5. Which of the following is not a method of finding roots of an algebraic equation?
 - a) Newton-Raphson method b) Secant method
- c) Lagrange's method d) None of these

- 6. Define orthogonal set.
- 7. Define Dirichlet's conditions.
- 8. Define Cauchy's Integral Formula.
- 9. Define Bessel's differential equation.
- 10. Define Gauss elimination method.

$\underline{SECTION} - \underline{B} (5 \times 4 = 20)$

Answer ALL the Questions:

11. a) Write short notes on (i) Surface (ii) Volume integrals

(OR)

- b) Write note on Inner Product and Unitary Space.
- 12. a) Write the uses of Fourier Series.

(OR)

- b) Write the Linearity property of Laplace Transforms.
- 13. a) Derive expression for line integral of a Complex Function.

b) State and prove Cauchy Residue Theorem.

14. a) Show that $nP_n = (2n-1)x P_{n-1} - (n-1)P_{n-1}$.

(OR)

- b) Show that $P_n(-x) = (-1)^n P_n(x)$.
- 15. a) Using Newton-Raphson method. Obtain a root of $\sin x = 1 x$ to three decimals.

(OR)

b) Derive expression for Simpson's one-third rule.

$\underline{SECTION - C (5 \times 8 = 40)}$

Answer ALL the Questions:

16. a) State and prove Gauss divergence theorem.

(OR)

- b) Describe the Schmidt Orthogonalisation procedure of constructing an orthogonal set.
- 17. a) Find Laplace transforms of (i) $\sin(at)$ (ii) $\cos(at)$ (iii) $\sin^2 t$ (iv) $\cos^2 t$

(OR)

- b) State and explain Dirichlet's Theorem.
- 18. a) State and prove Cauchy's Integral Theorem.

(OR)

- b) State and prove Laurent's Series.
- 19. a) Show that Rodrigue's formula for Legendre Polynomials of $P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 1)^n$.

(OR)

- b) State Bessel's differential equation, with its independent solutions.
- 20. a) Apply Gauss elimination method to solve the following simultaneous linear equations:

$$3x + 4y + 5z = 18$$

$$2x - y + 8z = 13$$

$$5x - 2y + 7z = 20$$

(OR)

b) Use (i) Trapezoidal rule (ii) Simpson's One-third rule, to evaluate the approximate value of

$$\int_{0}^{1} \frac{dx}{1+x}$$
 correct to 3 decimals taking $h = 0.25$.
