S.No.:	10	2
--------	----	---

http://www.onlineBU.com

BATCH: 2017

Reg. No.:	
-----------	--

END OF SEMESTER EXAMINATIONS, NOVEMBER – 2018 TOPOLOGY

SUBJECT CODE: 17P3MA10

MAJOR: M.Sc.(Mathematics)

TIME : 3 HOURS

SEMESTER : II MAX. MARKS: 70

SECTION - A (5 X 4 = 20)

Answer ALL the Questions:

1. Let Y be a subspace of X. If U is open in Y and Y is open in X. Show that U is open in X.

[OR]

- 2. Prove that every finite point set in a Hausdroff space X is closed.
- 3. State and prove the uniform limit theorem.

[OR]

- 4. Show that the union of a collection of connected subspaces of X that have a point in common is connected.
- 5. Show that every closed subspace of a compact space is compact.

[OR]

- 6. Prove that every compact Hausdorff space is normal.
- 7. Prove that the product of completely regular space is completely regular.

[OR]

- 8. Let X be a completely regular space. Prove that there exist a compactification Y of X having the property that every bounded continuous map $f: X \to R$ extends uniquely to a continuous map of Y into R.
- 9. Let X be a normal space; Let A be a closed G_s set in X. Prove that there is a continuous function $f: X \to [0,1]$ such that f(x)=0 for $x \in A$ and f(x)>0 for $x \notin A$.

[OR]

10. Let X be a Para compact Hausdorff space; Let $\{U_{\alpha}\}_{\alpha\in J}$ be an indexed open covering of X. Prove that there exists a partition of unity on X denoted by $\{U_{\alpha}\}$.

..2..

Scanned by Cam Scanner Scanner

SECTION - B (5 X 10 = 50)

Answer ALL the Questions:

- 11. Prove that in any topological space X, the following conditions hold.
 - i. ϕ and X are closed.
 - ii. Arbitrary intersections of closed sets are closed.
 - iii. Finite unions of closed sets are closed.

[OR]

- 12. Let X,Y and Z be topological spaces. Prove the following statements.
 - i. If $f: X \rightarrow Y$ maps all of X into the single point Y_0 of Y then f is continuous.
 - ii. If A is a subspace of X; the inclusion function $j=A\rightarrow X$ is continuous.
 - iii. If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are continuous then the map $g \circ f: X \rightarrow Z$ is continuous.
- 13. Let X be a metric space with metric d. Define $\overline{d}: XXX \to R$ by the equation $\overline{d}(x,y) = \min\{d(x,y),1\}$ prove that \overline{d} is a metric that induces the topology of X.

[OR]

- 14. Prove that a finite Cartesian product of connected space is connected.
- 15. Prove that the product of finitely many compact spaces is compact.

[OR]

- 16. Prove that every regular space with a countable basis is normal.
- 17. State and prove Urysohn's metrization theorem.

[OR

- 18. State and prove the Tietze extension theorem.
- 19. State and prove Nagata smirnor metrization theorem.

[OR]

- 20. Let X be regular, then prove that the following conditions are equivalent: Every open covering of X has a refinement that is:
 - i. An open covering of X and countably locally finite.
 - ii. A Covering of X and locally finite.
 - iii. A closed covering of X and locally finite.
 - iv. An open covering of X and locally finite.

* * * *