BATCH: 2014-2016

http://www.onlineBU.com

END OF SEMESTER EXAMINATIONS, APRIL / MAY - 2017 **GRAPH THEORY SUBJECT CODE: 14P3MA07**

MAJOR: M.Sc. (MATHS)

: 3 HOURS TIME

SEMESTER : II MAX. MARKS: 70

SECTION A $-(5 \times 4 = 20)$

Answer All the Questions:

1. Explain about Konigsborg Bridge problem.

[OR]

2. Prove that, the number of vertices of odd degree in a graph is always even.

3. Prove that, there is a one and only one path between every pair of vertices in a tree, T. [OR]

4. In a graph G there is one and only one path between every pair of vertices, then prove that G is a tree.

5. Prove that, two graphs G_1 and G_2 are isomorphic if and only if their incident matrixes $A(G_1)$ and $A(G_2)$ differ only by permutations of rows and columns.

- 6. If A(G) is an incidence matrix of a connected graph G with n vertices, then prove that the rank of A(G) is n-1.
- 7. Prove that $d^{-}(v) = d^{+}(v)$ for every vertex v in G.

8. Explain Simple Digraphs, Asymmetric Digraphs and Symmetric Digraphs.

9. Prove that, the number of simple, labled graphs of n vertices is 2^{-2}

10. Prove that, there are n^{n-2} labled trees with n-vertics $(n \ge 2)$.

SECTION B $-(5 \times 10 = 50)$

Answer All the Questions:

11. Prove that, a simple graph with n vertices and k components can have at most

$$\frac{(n-k)(n-k+1)}{2}$$
 edges.

- 12. Show that the maximum number of edges in a simple graph with n vertices is $\frac{n(n-1)}{2}$.
- 13. Prove that a connected graph G is a tree if and only if adding an edge between any two vertices in G creates exactly one circuit.

[OR]

- 14. Prove that, every circuit has an even number of edges in common with any cut set.
- 15. Prove that, the rank of cut-set matrix C(G) is equal to the rank of incidence matrix A(G), which is equals the rank of graph G.

- 16. If the edges of a connected graph are arranged in the same order for the columns of the incidence matrix A and the path matrix P(x, y), then prove that the product $(\text{mod } 2) A \cdot P^{T}(x, y) = M$, where the matrix M has 1's in two rows x and y, and the rest of n-2 rows are all 0's.
- 17. Prove that, an arborescence is a tree in which every vertex other than the root has an in degree of exactly one.

[OR]

- 18. Prove that, an arborescence there is a directed path from the root R to every other vertex iff a circuit less digraph G is an arborescence if there is a vertex v in G such that every other vertex is accessible from v, and v is not accessible from any other vertex.
- 19. Prove that a vertex v appears in sequence $(b_1, b_2, ..., b_{n-2})$ m times iff degree of v = m-1.

[OR]

20. Explain composition of permutations and permutation Group.

http://www.onlineBU.com