Reg.	No.	

END OF SEMESTER EXAMINATIONS, APRIL / MAY-2018

TOPOLOGY SUBJECT CODE: 17P3MA10

MAJOR: M.Sc (Mathematics)

TIME : 3 HOURS

J SEMESTER : II

MAX. MARKS: 70

SECTION - A (5 X4 = 20)

Answer All the Questions:

1. "Let X be a set and B be a basis for a Topology τ on X then τ equals the collection of all union of elements of B"-Prove.

(OR)

- 2. Show that let y be a subspace of X then a set A is closed in Y if it equals the intersection of a closed set of X with Y.
- 3. State and prove sequence lemma.

(OR)

- 4. State and prove intermediate value theorem.
- 5. Prove that if Y be a subspace of X then y is compact if and only if every covering of Y by sets open in X contains a finite sub collection covering Y.

(OR)

- 6. Show that if a subspace of a Hausdorff space of Hausdorff then a product of Hausdorff spaces is Hausdorff.
- 7. State Imbedding theorem define separate points from closed sets.

(OR)

- 8. Prove that if $A \subset X$ and $f: A \to Z$ be a continuous map of A into the Hausdorff Space Z then there is at most one extension of f to a continuous function $g: \overline{A} \to Z$.
- 9. Let A be a locally finite collection of subsets of X then $\overline{\bigcup_{A \in A} A} = \bigcup_{A \in A} \overline{A}$ -Prove.

(OR)

10. Show that very paracompact Hausdorff space X is normal.

$\underline{SECTION} - \underline{B} (5 \times 10 = 50)$

Answer All the Questions:

11. Prove that if X be an ordered set in the order topology and Y be a subset of X that is convex in X then the order topology on Y is the same as the topology Y inherits as a subspace of X.

(OR)

- 12. State and prove
- a) The pasting lemma
- b) Maps into products
- 13. The topologies on \mathbb{R}^n induced by the euclidean metric d and the square metric ρ are the same as the product topology of \mathbb{R}^n -Prove.

(OR)

- 14. Show that if L is a linear continum in the order topology then L is connected, and so are intervals and rays in L.
- 15. Prove that if X be a non empty compact Hausdorff space and X has no isolated points then X is uncountable.

(OR)

- 16. Every well ordered set X is normal in the order topology Prove.
- 17. State and prove Urysohn lemma.

(OR)

- 18. State and prove Tychonoff theorem.
- 19. State and prove Nagata-Smirnov metrization theorem

(OR)

20. Show that space X is metrizable if and only if it is a paracompact Hausdorff space that is locally metrizable.

Reg.No.	
---------	--

S.No. 94

BATCH: 2014 - 2016

END OF SEMESTER EXAMINATIONS, APRIL / MAY -2018 TOPOLOGY AND FUNCTIONAL ANALYSIS SUBJECT CODE: 14P3MA11

MAJOR: M.Sc., (Mathematics)

TIME : 3 HOURS

lo SEMESTER: III

MAX.MARKS: 70

$\underline{SECTION} - A (5 X 4 = 20)$

Answer ALL Questions:

1. Prove that the interior Int(E) of a set E in a space X is the largest open set of X contained in E.

(OR)

- 2. Prove that E of a space X is open in X if and only if the inclusion map $i: E \subset X$ is open.
- 3. Show that every regular Frechet space is a Hausdorff space.

(OR)

- 4. Prove that every closed set K in a compact space X is compact.
- 5. Show that every continuous image of a connected set is connected.

(OR)

- 6. Prove that every contractible space is pathwise connected.
- 7. Show that ℓ_n^n is a Banach Space.

(OR)

- 8. Prove that $Lp^* = Lq$; where $\frac{1}{p} + \frac{1}{q} = 1$.
- 9. Prove that every non zero Hilbert space contains a complete Orthonormal set.

(OR)

10. If m is a closed linear subspaces of a Hilbert space H, then prove that $H = M \oplus M^{\perp}$.

SECTION - B (5 X 10 = 50)

Answer ALL Questions:

11. Prove that a set U of a space X is open iff U contains a neighborhood of each of its points.

(OR)

- 12. Prove that set E in a space X is dense in X iff the topology of the space X has a basis such that every non empty basic open set meets E.
- 13. If E is a retract of a Hausdorff space X, then prove that E is closed set in E.

(OR)

- 14. State and prove Tychonoff's theorem.
- 15. Prove that the topological product of an arbitrary family of connected spaces is connected.

(OR)

- 16. Show that space X is locally pathwise connected of a point p iff every neighborhood of p contains a pathwise connected neighborhood of p
- 17. State and prove the Hahn Banach theorem.

(OR)

- 18. State and prove the open mapping theorem.
- 19. If x and y are two vectors in a Hilbert space then prove that $|(x,y)| \le ||x|| ||y||$.

(OR)

20. State and prove Bessels inequality.
