END OF SEMESTER EXAMINATIONS, NOVEMBER - 2018 TOPOLOGY AND FUNCTIONAL ANALYSIS SUBJECT CODE: 14P3MA11

MAJOR: M.SC (MATHS) TIME : 3 HOURS SEMESTER : III

MAX. MARKS: 70

SECTION - A (5 X 4 = 20)

Answer All the questions:

1. Prove that a set \cup of a space X is open iff \cup contains a neighbourhood of each of its points.

(OR)

- 2. Prove that the projection $p_{\mu}: \phi \to X_{\mu}$ is an open map from ϕ onto X_{μ} for each $\mu \in M$.
- 3. Prove that the topological product X of any collection $\{X_{\mu} \mid \mu \in M\}$ of Hausdorff space is a Hausdorff space.

(OR)

- 4. Show that every continuous image of a compact space is compact.
- 5. Prove that the real line R is connected.

(OR

- 6. If a space X is locally contractible at a point $p \in X$ then prove that X is locally path wise connected at the point p.
- 7. Define a normed linear space and Banach space with an example.

(OR)

- 8. State and prove the Open Mapping Theorem.
- 9. Let M be a closed linear subspace of a Hilbert space H, let x be a vector not in M, and let d be the distance from x to M. Then prove that there exists a unique vector y_0 in M such that $||x y_0|| = d$.

(OR)

10. State and prove the Poparisation identity.

$\underline{SECTION - B (5 \times 10 = 50)}$

Answer All the questions:

- 11. For any given set E in a space X, prove that the following results:
 - a) $cl(E) = E \cup \partial(E) = Int(E) \cup \partial(E)$
 - b) E is open iff Int(E) = E
 - c) E is closed iff cl(E) = E

(OR)

- 12. If $f: X \to Y$ is a function from a space X into a space Y with a given basis and a given sub-basis of its topology, then prove that the following statements are equivalent:
 - (i) The function $f: X \to Y$ is a map.
 - (ii) The inverse image $f^{-1}(U)$ of each open set U in Y is open in X.
 - (iii) The inverse image $f^{-1}(V)$ of each basic open set V in Y is open in X.
 - (iv) The inverse image $f^{-1}(W)$ of each sub-basic open set W in Y is open in X.
 - (v) The inverse image $f^{-1}(F)$ of each closed set F in Y is closed in X.
 - (vi) $f[cl(A)] \subset cl[f(A)]$ for each $A \subset X$.
 - (vii) $f^{-1}[cl(B)] \supset cl[f^{-1}(B)]$ for each $B \subset Y$.

. . 2 . .

13. State and prove the Urysohn's lemma.

(OR)

- 14. State and prove the Tychonoff's theorem.
- 15. Prove that the topological product of an arbitrary family of connected spaces is connected.

(OR)

- 16. Prove that a space X is locally pathwise connected at a point p iff every neighbourhood of p contains a pathwise connected neighbourhood of p.
- . 17. Let M be a closed linear subspace of a normed linear space N, If the norm of a coset x+M in the quotient space N/M is defined by $||x+M|| = \inf\{||x+m|| : m \in M\}$ then prove that N/M is a normed linear space. Further, if N is a Banach space, then so is N/M.

(OR)

- 18. Let N and N' be normed linear spaces and T a linear transformation of N into N'. Then prove that the following conditions on T are all equivalent to one another:
 - (1) T is continuous
 - (2) T is continuous at the origin, in the sense that $x_n \to 0 \Rightarrow T(x_n) \to 0$.
 - (3) there exists a real number $K \ge 0$ with the property that $||T(x)|| \le K ||x||$ for every $x \in N$
 - (4) if $S = \{x : ||x|| \le 1\}$ is the closed unit sphere in N, then its image T(S) is a bounded set in N'.
- 19. Let $\{e_1, e_2, ..., e_n\}$ be a finite Orthonormal set in a Hilbert space H. If x is any vector in H, then prove that $\sum_{i=1}^{n} |(x_n e_i)|^2 \le ||x||^2$.

Further,
$$x - \sum_{i=1}^{n} (x_i e_i) e_i \perp e_j$$
 for each j.

(OR

- 20. Let H be a Hilbert space, and let $\{e_i\}$ be an Orthonormal set in H. Then prove that the following conditions are all equivalent to one another:
 - (1) $\{e_i\}$ is complete.
 - (2) $x \perp \{e_i\} \Rightarrow x = 0$
 - (3) if x is an arbitrary vector in H, then $x = \sum_{i} (x_i e_i) \cdot e_i$
 - (4) if x is an arbitrary vector in H, then $||x||^2 = \sum |(x_i e_i)|^2$.
