http://www.onlineBU.com

END OF SEMESTER EXAMINATIONS, APRIL / MAY – 2017 ADVANCED FUNCTIONAL ANALYSIS SUBJECT CODE: 14P3MA18

MAJOR: M.Sc (Maths)
TIME: 3 HOURS

SEMESTER : IV MAX. MARKS: 70

SECTION - A (5 X 4 = 20)

Answer the Following:

1. Prove that in every Hilbert space $H \neq \{0\}$, there exists a total Orthonormal set.

OR

- 2. State and prove the theorem on bounded linear functional.
- 3. Define fixed point, contraction and write the error estimates.

[OR]

- 4. Let $T: X \to X$ be a continuous mapping on a complete metric space X = (X, d) and suppose that T^m is a contraction on X for some positive integer m. Prove that T has a unique fixed point.
- 5. Prove that the space C[a,b] is not strictly convex.

[OR]

- 6. Let Y be a subspace of the real space C[a,b] satisfying the Haar condition. Given $x \in C[a,b]$, if $y \in Y$ is such that for x-y there exists an alternating set of n+1 points, where $n=\dim Y$, prove that y is the best uniform approximation to x out of Y.
- 7. Define Eigen values, Eigen vectors, Eigen spaces, spectrum and resolvent set of a matrix.

[OR

- 8. Give an example of an operator with a spectral value which is not an Eigen value?
- 9. If X and Y are normed linear spaces, prove that the range $\Re(T)$ of a compact linear operator $T: X \to Y$ is separable.

[OR]

10. If $T: X \to X$ is a compact linear operator and $S: X \to X$ is a bounded linear operator on a normed space X, prove that TS and ST are compact.

$SECTION - B (5 \times 10 = 50)$

Answer the Following:

11. State and prove Riesz's theorem.

[OR]

- 12. State and prove Baire's category theorem.
- 13. State and prove Banach fixed point theorem.

[OR]

- 14. State and prove Picard's Existence and uniqueness theorem.
- 15. State and prove the Existence theorem for best approximations.

[OR]

- 16. State and prove Haar uniqueness theorem for best approximation.
- 17. Prove that all matrices representing a given linear operator $T: X \to X$ on a finite dimensional normed space X relative to various bases for X have the same Eigen values.

[OR]

- 18. Prove that the resolvent set e(T) of a bounded linear operator T on a complex Banach space X is open and hence the spectrum $\sigma(T)$ is closed.
- 19. Let (T_n) be a sequence of compact linear operators from a normed space X into a Banach space Y. If
 - (T_n) is uniformly operator convergent, say, $||T_n T|| \to 0$, prove that the limit operator T is Compact.

[OR

20. Let X and Y be normed spaces and X' and Y' the dual spaces of X and Y. Let $T: X \to Y$ be a linear operator. If T is compact, prove that its adjoint operator $T^X: Y' \to X'$ is also compact.

* * * * *