BATCH: 2015, 2016 REG. NO.:

END OF SEMESTER EXAMINATIONS, NOVEMBER - 2018 APPLIED SPECTROSCOPY

SUBJECT CODE: 09P3PH12

MAJOR: M.SC (PHYSICS)

SEMESTER : IV

TIME : 3 HOURS

MAX. MARKS: 70

SECTION -A (10 X 1 = 10)

Answer All the questions:

- 1. What is Ritz combination principle?
- 2. Wave numbers of the alkali spectra can be written as

a)
$$\bar{\gamma} = \frac{1}{\lambda} = R \left[\frac{1}{(\alpha - p)^2} - \frac{1}{(\beta - q)^2} \right]$$

b)
$$\overline{\gamma} = \frac{1}{\lambda} = R \left[\frac{1}{(\alpha + p)^2} - \frac{1}{(\beta + q)^2} \right]$$

c)
$$\overline{\gamma} = \frac{1}{\lambda} = R \left[\frac{1}{(p-\alpha)^2} - \frac{1}{(q-\beta)^2} \right]$$
 d) $\overline{\gamma} = \frac{1}{\lambda} = R \left[\frac{1}{(p-\alpha)^2} + \frac{1}{(q+\beta)^2} \right]$

d)
$$\overline{\gamma} = \frac{1}{\lambda} = R \left[\frac{1}{(p-\alpha)^2} + \frac{1}{(q+\beta)^2} \right]$$

- 3. Give any one application of microwave spectroscopy
- 4. When $I_B = I_C > I_A$, then the molecule is called
 - a) Oblate symmetric top

b) Prolate symmetric top

c) Spherical top

- d) Assymmetric top.
- 5. Induced electric dipole moment is
 - a) $\mu = \alpha E$
- b) $\mu = E$
- c) $\mu = \alpha$
- d) $\psi = \alpha x E$

- 6. What are asymmetric top molecules?
- 7. What is predissociation?
- 8. The fine structure in ESR spectrum is due to
 - a) One paired electronic spin
- b) Two unpaired electronic spin
- c) More than three unpaired electronic spin d) More than one unpaired electronic spin
- 9. In NMR frequency waves induce transition between magnetic energy levels of a molecule.
 - a) IR
- b) Radio
- c) Microwave
- d) Far IR.

10. What is meant by quadrupole relaxation.

SECTION - B (5 X 4 = 20)

Answer All the questions:

11. a) Discuss the stark effect in Hydrogen.

(OR)

- b) Discuss briefly the Paschen Back effect.
- 12. a) Explain the simple harmonic oscillator of the vibrating diatomic molecule.

- b) Obtain an expression for the rotational levels of a diatomic molecule taking it as a rigid rotator.
- 13. a) Explain the Quantum theory of Raman effect.

(OR)

- b) Explain the pure rotational Raman spectra of linear molecules.
- 14. a) Discuss briefly the electronic spectra of diatomic molecules using Born-oppenheimer approximation.

(OR)

b) Write a note on hyperfine structure of E.S.R Spectroscopy.

15. a) With a neat diagram, explain the continuous wave N.M.R. Spectrometer.

(OR)

b) Discuss the Quadrupole effects of Mossbauer spectroscopy.

$\underline{SECTION - C (5 \times 8 = 40)}$

Answer All the questions:

16. a) Explain in detail the Lande's g factor.

(OR)

- b) Discuss in detail about the experimental setup for normal Zeeman effect.
- 17. a) Explain linear symmetric and asymmetric top molecule.

(OR)

- b) With neat diagram, explain Fourier transform spectroscopy.
- 18. a) Explain the Vibrational Raman spectra of H_2O and CO_2 molecule.

(OR)

- b) Describe structure determination from Raman and Infra-red spectroscopy
- 19. a) Explain the basic principle of ESR spectrometer.

(OR)

- b) Explain Franck Condon principle.
- 20. a) Discuss in detail about the chemical shift of Nuclear magnetic resonance spectroscopy.

(OR)

b) Explain the quadrupole effects of NMR
